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NOMENCLATURE
constant 1 real part of m
half-length of body m, imaginary part of m
horizontal displacement due to vibration n parameter in Eq. (22)
of a point on body surface d/dn derivative is the direction of the
radius of body at x, = 0 outward normal to surface
function defining meridian profile O(x) y = O(x) means lim y/x is bounded
. 7 7 or zero X =0
a constant in equation for streamline
body family (Eq. (55) ) P (x) Legendre polynomial of order s
= b,/b " function defined by Eq. (50)
non-dimensional pressure coefficients p farfield pressure
(Eq. (58)) ? ; :
P pressure in undisturbed fluid
defined as C, C, for cos 6, = 1 Q, function defined by Eq. (51)
the speed of sound for the fluid
U R = V(xl g fl)z +Bz [(‘1 o 62)2
= [M&x, - §) +RV/B? T, - §)2]
B 2 3 3
= [M@x, +Ry)VB R, - v,§+52,2
¥ & 2
= M&x,-§)+R, VB R, -V(xl-gl)zﬂsz;z
maximum diameter of body r2 - xg + ‘i
force normal to surface of body s surface of body
i, = 1,. 2, 3 components of force S(x,) = nb2 x,)
= :: (x,)see Eq.(23) s subscript giving order of Legendre
5 polynomial or Bessel function
defined by Eq. (65) ; .
defined by Eq. (66) U, velocity of uniform streams
spherical Bessel functions of order s " = kacos 6,
v ha v = nn/2
- 1/ k v transverse velocity of a section of body 41
length of body v, constant in Eq. (60)
i = 1,2, 3 direction cosines ¥ i,
- U,/ w, fluid velocity normal to surface
source strength ¥r%g)W, components of velocity (Eq. (25) )
- =y, s,(‘l) W,,W,,W, components of velocity
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i i
’ l XXX, rectangular coordinates
R | * . -ikct
x, = x, -ia (x))e (Eq. (23) )
~
3 *1 - Xy i
. B2 = 1-M2 |
3 f r average farfield intensity |
£ error (Eq. (15) )
\ e cylindrical coordinate (Eq (23)and
: Fig. 1) :
: 00 = cos-l xl/R0
J 6, = cos1x,/R, :
4 y 03 = cos-l !3/Ro
: :
A wavelength
'R strength of a doublet with axis in

a given direction n "

B (x) i=1, 2, 3 strength per unit length of
the i25 component of the doublet
distribution (Eq. (41) )

& i = 1,2,3 coordinates of source
or doublet

mass density in undisturbed fluid

e >

velocity potential of the disturbance

e caused by the body

- = =Ugx, +®

defined by Eq. (3)

defined by Eq. (4)

defined by Eq. (24)

is such that ¢ = ¢ o“iket (Eq. (5) )
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cos-! xs/t
o ﬂz constants in Eq. (60)
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LOW FREQUENCY SOUND RADIATION FROM SLENDER ;
- BODIES OF REVOLUTION E

INTRODUCTION

Since the low frequency sound produced by surface ships and sub-
marines can propagate over long distances with small loss of energy,
it is of interest to obtain some simple examples of the radiation field

of such bodies. In this report the vibrating body is considered to be in

an unbounded fluid, and thus the effect of the free surface and bottom
(or other external boundary) is not considered. If the body possesses
a steady velocity along its longitudinal axis, the radiated field for
harmonic vibrations is given for the linearized problem by a formula
which is similar to the Helmholtz formula and reduces to that formula
when the steady velocity is zero. The results are restricted to the
farfield that is due to the vibration of a body of revolution. The body
length and the wavelength of the vibration are much greater than the
maximum body diameter, and the steady speed of advance of the body
is much less than the speed of sound in the fluid. Under these con-
ditions the formula for the radiation field reduces to an integral over
a distribution of acoustic sources and doublets along the axis of the
body.

For the axially symmetric longitudinal vibrations of a body of
revolution only the source term is important. For transverse vibra-
tions the farfield is determined by a doublet distribution. It is shown
that, for the low frequency transverse vibration of a slender body of
revolution, the force which determines the doublet strength is con-

veniently given by the extended Lagally theorem of incompressible




hydrodynamics. This theorem determines the forces, moments, and
added masses for a body which can be represented bya closed stream
surface surrounding a distribution of singularities in a potential flow,
The theorem was given in 1922 by Lagally for steady flow.' Then,

in 1953, it was extended to non-steady flow by Cummins,?

Related discussions of the low frequency sound radiation from
slender bodies have been presented by Strasberg® and Chertock.*
However, their examples are restricted to the spheroid. For the
spheroid the results given by Strasberg agree with those of the
present report. Strasberg, in turn, showed that his results were in
agreément with those of Chertock for slender spheroids.

If a given streamline body of revolution does not differ too much
from a spheroid, the known results fer a spheroid could be used as
a first estimate of the radiated field of the streamline body. However,
the'fact that the streamline body is not symmetric about its midship
section introduces effects which are not predicted from a spheroid.
To illustrate this, examples are given of the radiated fields of a
simple class of streamline bodies and of spheroids with the same

length and diameter.

'M. Lagally, "Berechnung der Krifte und Momente die strtomende Fliissigkeiten auf
ihre Begrenzung ausiiben, " Z. angew. Math, Mech. 2, (1922) pp. 409-422,

‘w. E Cummins, “The Forces and Moment on a Body in a Time-Varying Potential
Flow, " Journal of Ship Research 1, No. 1, 7-18 (1957). (First published as David Taylor
Model Basin Report No. 780, June 1953, )

3M. Strasberg, "Sound Radiation from Slender Bodies in Axisymmetric Vibration, "
Paper O-28 in Proceedings of the 4th International Congress on Acoustics, 1962, Copenhagen
(Organization Committee of the 4th ICA and Harlang & Toksvig, Copenhagen, 1962).

4G. Chertock, "Effects of Underwater Explosions on Elastic Structures, " Fourth
Symposium on Naval Hydrodynamics, B. L. Silverstein, Ed. (Office of Naval Research
ACR-92, 1962) pp. 933-945.

5G. Chertock, "Sound Radiation from Prolate Spheroids, " J. Acoust. Soc. Am. 33,
(1961) pp. 871-876.
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1. THE HELMHOLTZ FORMULA

Consider the flow of a uniform stream about a slender body of

revolution., In Fig, 1, the uniform - U, is in the negative

Fig. 1 - Coordinate System

x; -direction, and the body is placed with its longitudinal axis on the
x-axis. For a compressible fluid, the velocity potential for the flow

about such a body can be written as
. =-Uyx, +9, (1)

where

Uyx, is the velocity potential of the uniform stream . and

) is the velocity potential of the disturbance caused by the body.
(The disturbaace velocities are w, , i € 1, 2, 3 with w, = + d¥/dx; .)

e ————— e ™ T T e N L. T . e T

A AR e S R A A S U S g M



Then, for small vibrations of the body, the linearized equation for
® s

(2)

c?

ut\a?e &0 0 U, 30 1 %0
le— + + +2— = ;
axf 8:: axg c? 9x,dt ¢ 9¢2

where

c is the speed of sound and

t is time.

It will be assumed that the effect of the vibrating body can be
approximated by changes in the flow caused by distributions of
time-varying sources and doublets, The solutions of Eq. (2) for

a source and a doublet are, respectively, the real parts of 78

w(é, £, &)
47R

(bs(xl"z"g") o e-ikc(t-D/c) (3)

®I. E. Garrick, "Nonsteady Wing Characteristics," Section F of Aerodynamic
Components of Aircraft at High Speeds, A, F. Anderson and H. R. Lawrence, Eds,
(Princeton University Press, Princeton) p. 662.

"Reference 6, pp. 674-675.

8. E. Garrick, "On Moving Sources in Nonsteady Aerodynamics and in Kirchhoff's
Formula," Proceedings of the First U, S. National Congress of Applied Mechanics (The
American Society of Mechanical Engineers, 1952) p. 735.
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“n(fll é:: 63) dJ e’ ikc(t-D/c)
4m dn R

¢D(xl,x2,x3,t) = -~ ’ (4)

®_, (9,) is the velocity potential at point (x, x,, x,) and time t due w0
a source (doublet) at £, . bt

m(£;, &, ;) is the source strength (a source is a point of outward radial flow; -
its strength is the volume emitted per unit time); -

Fn (51 ’ fz ’ ‘fa) is the strength of ihe ddblet with axis in a given direction n ;9.10

—i:! -—i+! —a—+, i.
du- - aE CetaE CPGES

] 1 ] 3 [} 3 are the direction cosines of the axis of the doublet;

=
I

= \ﬂxl - fl)z + Bz [(xz - fz)z +(x3 2 53)2] H

g M(x, - ) +R

bl

B owig N

A is the wavelength; and

2w

k = —.
A

9H, Lamb, The Dynamical Theory of Sound (Edward Arnold Ltd., London, 1925,
2nd ed. , Dover Publications, New York, 1960) p. 230,
101 general, m and u are complex in Egs. (3) and (4),
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For harmonic time variation, let

O(x,, x;, x5, €) = B(x,, &y, xy) L. (5)

Then, a representation for ¢ in the region external to the body, in
terms of ¢ and its normal derivative on the body surface, is given

by the following generalization of the Helmholtz formula!’

o 36\ eikP iéihn) .
$blxy, x,, x3) = 4—"‘[{(—3) R +¢3n R ds, (e)

where

d/dn is the derivative in the direction of the outward normal to S.

The force normal to ds is

Fne'ikct ds = (p ‘.._po) dS 3 (7)

and the pressure p is given by

: o
P-Py = +1pokc¢+poUo 3

g (8)
1

11 Reference 8, p. 737.
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where

Po  is the pressure in the undisturbed stream and s |

P  is the mass density of the fluid.

Thus,

PR T Bl (9) i

and Eq. (6) can be written in the form

;
e J' 09 eikD+iMi‘éi S R | ik Ltk G 1
4n ) dn R k 0§ da\ R poke "da\ R 9§

But,

M 93¢ 3 feikD M2 MJR .M 19dR]| 9¢ kP
j - e Id—— o o 2] 4 e e F ] e ch— — : (11)
k 821 dn R ﬂ2 ﬁl dn k R n 6§x R

Then, for M <<1 and the farfield where R >> )\, the second term

of the integrand of Eq. (10) is small compared with the first term,

and ¢(x;,x,,x;) can be approximated by




For axially symmetric flow, the surface integrals in Eq. (12)
can be approximated by single integrals along the axis of the body.
The volume of fluid flow per unit time across an elementary ring

area of the surface at the mean position of the body can be written
as

m(&) ekt dg, . (13)

The resultant of the force F, due to the ring area is directed along

the x,-axis and can be written as

Il T (14)

For points far from the body (i. e., terms proportional to 1/R?

are neglected), the following approximations hold:

ikD ikF2 [M(x;-€1) +Rg-£cosbpl
E oK e e 1418 ); (15)

R Ry

. a2
F] ikD ik 3 [M(xl-fl)i»Ro-flcoseo]
S Wi [‘:ost90+M]e [1+igl, (16)
ﬁZ RO 0
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where

R, = Vxi + Boc? & val + %, M<<1;

2

r - X 2

2ty
cos 6, = x1/Rg ;

ieol_\_ 2nb/A;

b is the radius of the body atx, = 0; and

? is the length of the body (! = 2a).

With the conditions that M<<1 and K M <<1 the velocity
potential @ can be approximated by

-ikc(t-Dg/c) (2 i
P oy e-ikc(t-Dg/c J' [m(fl)+L cos 6 Fl(fl)] e-ik cos ao-f:dfl’ (17)
4 R, La 5 e
where
Mx. +R
D, = .
B2

With this expression for ¢, the pressure in the farfield is approxi-

mated (for M<<1) by the real part of

P-Py = +ipyke ®. (18)

A similar procedure can be applied for transverse vibrations.

However, in Section III a different (but equivalent) method is used.

RS el A b ORI » o Y B n T 1
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I1. LONGITUDINAL VIBRATION

The farfield pressure is determined by Eqs. (17) and (18) in
terms of the flow at the surface of the body. Let the equation for the

undisturbed body of revolution be

r = b(nl) - (19)
For the axially symmetric longitudinal vibration, the horizontal
displacement of a point on the body surface is given by the real

part of

ao(xl,t) = iao(xl)e'ik". (20)

The special cases considered are:

& b

(a) rigid body motion, ay(x,) = -a;, a, <<b, (21) %ﬁ
: ; . n X1
(b) accordion motion, a,(x,) = a; sin n?_a. . (22)

i o

The equation for the vibrating body is

L

f(x,0,5,0) = r-b(x]) =0, (23)

where

-iket

x: = xl—iao(xl)e and

X, ©, r are the cylindrical coordinates shown in Fig. L.




For the linearized problem with harmonic time variation, the

axially symmetric velocity potential will be written as

Q(Xl, £, t) = ¢0(xl’ r) + ¢(‘1' ) etiket

The boundary condition at the body surface is

where

w, = +0¥/0r,

wg = +0®/9d8 = 0, for axially symmetric flow, and
= =U, +a¢/3xl.

.

From Egs. (19) through (25), the boundary conditions for o
and ¢ at the mean position of the body are (neglecting second

order terms)

a¢ . ’ ’
-5'— = [+|Uono(xl)-kcao(xl)]b (x,),




where
db(x,)
b‘(x,) = e—— o
dx,
and
da,(x,)
no(xl) =—%—-.

The boundary conditions can be applied at the mean position of the
body, provided the slope b'(x,) is of the order of d/f <1 and the
radius of curvature of the body profile is large compared with the
maximum amplitude of vibration.

For rigid body motion, aj(x,) = 0, and the linearized boundary
condition given by Eq. (27) does not depend on U,. For accordion
motion, the relative importance of the two terms on the right-hand

side of Eq. (27) depends essentially on the ratio!2

U n-”'—:.Z

i .0 A (28)
—_— == aM—.

kcag ) ]

Thus, for n=1, m=0.01, Ml=1 , the effect of the first term
on the right-hand side of Eq. (27) will be negligible. Only for
wavelengths much greater than the body length, combined possibly
with a large n, would this term be significant when M << 1,

The velocity potential ¢, that satisfies the boundary condition

(26) is determined approximately for a slender body by a distribution

125¢e also Eq. (53).
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of sources, along the axis of the body, with strength per unit length

given by!3

my(x,) = -UyS$7%x,), (29)

where
S(x,) is the sectional area of the body.

It will be assumed that the velocity potential #(&;,r) can be

approximated at the body surface by

l a eile
B(x,,r) = --—f w(é)——d¢ , (30)
1 4” i 1 Rl 1

where

R, = gJ(x; - £)?+8%*  and
M(x]—fl)+Rl

BZ

b,
This can be approximated by

. 1 > ik R
blxy, 0) = =11 +0(k] '2“2)];[- m(«f)[l+iklM(xl—€,)]-e—R--Ldfl .E31)

1

13§, Goldstein, Lectures on Fluid Mechanics (Interscience Publishers, Inc., New York,
1960), p. 183,




where

k, = 1/8%k, and

y = 0(x) means lim %—is bounded or zero.
X —

The approximation requires that

,, u
k, M .2;2- i)(—:—) <<1. (32)

Thus, it is not necessary for the wavelength )\ to be much greater
than the body length 2, provided M = U,/c is sufficiently small.

The radial velocity is

dd(x, ,r) a cos k, R
st LS ﬁzkirf m(£) (1 +ik Mx, - ¢)] { —
Jr bn bk &, R,)?
sin klR‘ [ cos k,R, sin klRl
+ - - - ¢ . (33)
&k, R ) kR, (&,R,)

If the factor in braces is expanded in terms of k, R, then the

asymptotic expansion for d¢/9r as r tends tozero is'®

;ad)(‘l,r) = 1+0 i!ni _l-—_—.m{ﬁn) . (34)
or A2 A 2n r

14 Reference 13, p. 186.

~—y




— Wg‘?
i
]
;

Then, from Eq. (27)

£ m,(x,) =-kcay(x,)Sx,),

mz(xl) = +U086 (xl)S'(xl),

where

m(x,) = m,(x,) +im,(x;) and

S(x,)

nb? ('l)'

The asymptotic expansions used to determine d¢/9r for small r

. are not valid at the ends of the body unless the ends are cusped.'’

For the vibrating body, it will be assumed that the volume changes
in small regions near the ends and the reaction on the fluid of these
regions have a negligible effect on the farfield pressure compared

with the effects due to the rest of the vibrating body.

Since the source distribution m (x;) specified by Eqs. (35)

and (36) determines the flow across the mean surface of the vibra-

ting body, it is also the source strength for Eq. (17) for the far-
field pressure. With this source strength, the velocity potential
p(x,, f)e'"‘“’ as determined by Eq. (30), reduces to just the first

term on the right-hand side of Eq. (17) (under the same conditions

15 Reference 13, p. 185,




usedindetermining Eq. (17) ). In fact, within the approximations
made, the source distribution completely determines the farfield.
There is no net radial force since the flow is axially symmetric.
Hence, the last two terms on the right-hand side of Eq. (17) are
zero. The x; component of force on a ring element of area

2w b(x,) dx, of the mean surface is per unit length

Fl(xl)e'“‘c‘ = z"b(xl)["'?o] b(x,), (38)

t:b(x,)

where

d¢ (x,,r) )
P-Py = g ike ¢(xl,r) +U, e-iket

ax,

It can be verified that 1/p0 c Fy (x;) can be neglected in Eq. (17) in

comparison with m (x,).

I11. TRANSVERSE VIBRATION

For the transverse vibration of a body of revolution in a uniform
stream, the solution of Eq. (2) is the sum of the velocity potential
due to the uniform stream and that due to the vibration. Let the
transverse vibration be such that the circular sections of the body do
not change shape or radius but vibrate with velocity + W (x,) g e
perpendicular to the longitudinal axis, The flow near the body will
be considered as represented by the superpositon of a transverse

-ikct

flow of velocity - W (x,)e on the flow of the uniform stream

16
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past the undisturbed body. Since the perturbation must be small if
the problem is to be linear, it will be assumed that the maximum
amplitude § of the vibration is such that § < < b and the change in
shape of the meridian profile is continuous and of order 0 (§/1).
Then, with the additional conditions that d/, r/\, Up/c, W/c << 1,
the solution of Eq. (2) that holds near the surface of the body is !¢

$x,,r, Q) eiket o -i—su,)wx,)i‘%ﬁe'“‘“ll+0(k=.2 take)]l, (39)

where

W(x ‘) is the transverse velocity of a section of the body and

cos ) = e
r

For incompressible flow this same solution holds with error factor
[1+0(d2/020nd/1))."” Hence, the flow can be considered as quasi-
stationary (i.e., time-varying-incompressible) flow at the surface
of the body. It can be represented by a distribution of three-dimen-
sional doublets with axes perpendicular to the body axis and in the
direction of w (x;). The strength of the doublet distribution per

unit length along the axis is

pylxy, 1) = +28(x,)Wix,)eiker, (40)

165, W. Miles, "On Non-Steady Motion of Slender Bodies, " Aeronaut. Quart, 2,
November (1950) p. 186,
17B. Thwaites, Incompressible Aerodynamics (Oxford, Clarendon Press, 1960) p. 393.

17
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For the flow of the uniform stream past the body there is a doublet

distribution u, (x;) along the axis with strength

By(x) = Uy S(x,). (41)

However, with the conditions imposed, the approximate solution of
Eq. (2), as given by Eq. (38), does not depend on Uj,, and the
reaction of the body on the fluid is approximated by the reaction of
the time-varying doublet distribution p3. Applying the extended

Lagally theorem to this doublet distribution gives the reaction 18 19

d
FS(xl")d‘l = “Po;: y,(xl,t)dxl. (42)
= +2ip ke S(x )W, )e ke dy (43)

The mutual interactions of the doublets would involve products of
the velocities at different points on the body and are neglected in the
linear theory.

For the slender body the force F, dx, exerted on the fluid at
each section acts as an isolated doublet with axis in the x 3-direction.

The resulting farfield velocity potential is

~itkc (t-Dg/c) a g ;
Dx,, x,, x;,0)= - cos 63%2ikJ‘ S(fl)W(fl)e“‘“’s 6o fldfl (44)
47R, '

where

cos 0; = —
0

18 Reference 2, p. 18,
191, Landweber and C. S, Yih, "Forces, Moments, and Added Masses for Rankine
Bodies, " J. Fluid Mech, 1, (1956) p, 332,
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The farfield pressure is given by

-ike (t-Dg/c)
P-Py = +_l. pokzc cos 03(:

s -ik cos 6p+ &
2 Ro f w(é-l)s(fl)e dfl' (45)

-a

The same result is obtained if the velocity potential given by
Eq. (39) is used in Eq. (12). In this case the two terms of Eq. (12)
are equal. The first term gives the effect of the acceleration of the
displaced fluid,and the second term gives the added mass effect in
the approximating two-dimensional incompressible flow near the

body.

IV. EXAMPLES OF AXIALLY SYMMETRIC VIBRATION

For axially symmetric vibration, the farfield pressure is given

by

. -ikc (t-Dg/c) a o ‘
Bopy = =a gheiadie Ll ety e de gy (46)
47 R, s

where Eqs. (17) and (18) were used and the force term of Eq. (17)
was neglected in accordance with the analysis indicated at the end
of Section 11, The types of vibration are specified by Eqs. (20) and
(21). Using Eqgs. (35) and (36) yields the corresponding source
strengths:

(a) rigid body motion, m (x,) = +kca, S$(x,),m,(x,) =0, (47)

FYNUEEEIS IR PSP LRSS DL, KSR BN
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(b) accordion motion, m,(x,) = -kca, sin (—2 —ai) $(x,), (48)

a X
an 0 n 1 .
ml(xl) - ——2- U"-a— cos (""_,."1‘) S(‘l)'

-

where
m(x,) is defined by Eq. (37),

and

dS(x,)
5’(!1) = —_—

dxl

It will be assumed that the slope of the sectional area curve can be

represented by a finite sum of Legendre polynomials,?® Thus,

§%x,) = i‘ AP, (:al) (49)
s =0

where
the A, are constants.

With the source strength defined by Eqs. (48) and (49), the integral

in Eq. (46) is the sum of integrals of the form

L nﬂfl 61 -ik cos 6«
[ sin (TT\) P’(-a—)c = 0+¢1 ¢, (50)

p

{1

i-i) aligu+v)-j w=-v)l,

————

20For the spheroid and streamline body examples considered in this section, S’(x))
is given exactly by (49) with only a few terms, For more general forms, S°(x,) can be
approximated by (49).
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S ) - ‘
a nmw fl fl -ik © 8 'f ’!
Qs = I cos (—2-— _a-) Ps (_a_ e ik cos fg 1 d‘fl 3 (51) j
-a
|
4 =(—i)’alis(u+v)+js(u—v)],
where
‘ u = kacos 6,
5 § v = na/2, and
: ) jg(u) is the spherical Bessel function of order s. %!
i
i With these results, the farfield pressure for rigid body motion and

accordion motion are, respectively, the real parts of

3 f e-ikc (t-Dg/c) s A s
3 P-Py = —2—”- Po k2cla a, 8 Z (-i)® A jg (), (52)
' 0 s=0
and
! 2.2 gty & ; . .
P-Pp = —4—np0k c“aa, N z: ("‘)SAs {[ys(u +v)—;s(u—v] (53)
0 s =0

+-;-nM% [is(u+")+is(““’)]}-

21p, M, Morse and H. Feshback, Methods of Theoretical Physics (McGraw=-Hill Book
Co., Iuc., New York, 1953) p. 1573,




E In the following examples it will be assumed that nM (M/2)< < 1, and

the second terms of Eq. (53) will be neglected.
The equation of the meridian profile of a spheroid with center at

; the origin and axis of revolution along the x, -axis is

e(x,) = b {fl %2, (54)

a is the semi-major axis,

it e hapr N ot o NG ol

b is the semi-minor axis, and
‘:‘ = x,/a.

To illustrate the effect of a change in the distribution of volume
along the axis of revolution, a simple family of streamline bodies

can be constructed by adding the following function to the equation

for the meridian profile of a spheroid;

r,(x,) = 2bb; ¥, \}1 -7, (55)

where i

’t;'] = by/b and ]

b, is a constant that determines the amount of distortion from a spheroid.

Figure 2 shows the meridian profile of a spheroid with b/a = 0,1 P
and the profiles of two streamline bodies with b/a = 0.1, 31 =0.3 - L

and b/a=0.1, b, = 0.5. j
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Fig. 2 - Meridian Profiles

The slope of the sectional area curves for the spheroid and the

streamline bodies can be written as

2
S‘(x,) = —ZnPa—PlG'l) (spheroid) , (56)
1
and
; £
p b? 8~ ~
§'x,) =—n~;[2+;b, P, X)) +8b,P(X)) (57)
32

+ —5- tf P3 ("x"1 )] (streamline body).

The real part of the farfield pressure determined by Eqs. (52) or

(53) can be written as

sin [kc(t ~ Dg/c)] cos [ke(t =Dp/c) |
B po kic?b?a, {cs R, Lo 4G R, . } (58)

where

C, and C_ are non-dimensional functions of the parameters
specifying the body and motion.
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s Formulas for Cs and C. for the spheroid and streamline body
families with rigid body and accordion motion are given in Table 1.
For the spheroid in rigid body vibration and the simplest case
(i.e., n =1) of accordion vibration these results agree with those
ot Strasberg,” who has shown that these results agree with those
given by Chertock’ for slender spheroids and u < 3. Since
Chertock's results are based on an asymptotic expansion (for b/? - 0)

of the exact solution for a spheroid, the condition u < 3 represents

AN o s e e

a restriction on the results based on the slender body theory of the
) present report.
i For a given body and mode of vibration, the independent vari-
able in the formulas for C;, and C. is u = ka cos 6,. Thus,
with ka held constant, the formulas show how the axially sym-

metric farfield pressure given by Eq. (58) depends on the position

‘ of the observation point as specified by cos 6, =x,/R,. For the

spheroid in accordion motion both the body and the motion are ]

symmetric with respect to x,, and only a symmetric formula

occurs. Similarly, for rigid body motion, whichis not symmetric
with respect to x,;, only a skewsymmetric formula occurs for the E 3
spheroid. The meridian profile of the streamline body is not

symmetric with respect to x;, and as a result one of the functions

4 Cs, C. is symmetric and one is skewsymmetric with respect to
X, in each case. These functions are shown in Figs. 3 and 4. A
further comparison of the radiated fields is provided if the average

farfield intensity, based on the linear theory, is defined by

e R

§
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Fig, 3 - C¢ and C Rigid Body Vibration

Fig. 4 - Cgand C_ Accordion Vibration




The function C2 + C? is plotted in Figs.
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V. EXAMPLES OF TRANSVERSE VIBRATION

For transverse vibration the farfield pressure is determined by

Eq. (45). Let the transverse velocity of the sections be
n{) Q .
W(x,,t) = ['1 cos( = : '!l) + W, sin (-"Tz-'i'l)] o lher (60)
where

v,.V,, 91' and 02 are constants.

If the sectional area of a given body is expressed as a sum of
Legendre polynomials, Eqs. (50) and (51) can be used to evaluate
the integrals appearing in the expression for the farfield pressure.
For the spheroid and the streamline bodies considered in Section IV,

the sectional areas are, respectively,

S(xl)

7b? (1 - %)) (61)

: ,,52% (P, (X)) -P,(¥) ],

and

S(x,) = ab? [(1-%) + 4B (¥, -¥) +4B3(¥2-%)]

62 :
b2 3(P(“{)-P(?)]—4"53[12(‘1)-9(?)] e
% gl s 2\ % g "1 3t %, §

+ 4b2 [.1%15 (P, (X)) =P, (X ))+ Tlois (Py (X)) = Py (X)) )]} .




FY e — - ——

»
' 0 The farfield pressures for the spheroid and the streamline bodies
are, respectively,
-ike (- Dg/c) v v
! P=py, = +pok2c2b2 cos 03LT;.__ [(.—c-l-)j;(u, Ql)+i (n —c-z-)J;(u, 0')] (63)
and
-ikc (¢-Dg/c) L |
SOOI 2,242 e’ 0 4~ 1
‘) P-P, +P°k c*b® cos 0’ R, {(l +;bl) (n-:a)]:(u, Ql)

== l6~2 wl ik wz - . 4~
‘;b‘ (._T)J;("’Ql)+4bx ("‘c" Jo(u, Q) +i (l+;bf (64)
Vz - 167+ '2 it P W!
v (a-c—')J] (uy 92) --s‘bl (‘—c-)la (“’ 02) -4 bl (.-c-) J; (“, Ql) »

where
(-5 0o
Jg \U + ~— ,. u -
J: (u, ni) o 02 + ﬂz o e IS 3 (65)
w L wil.
(u+_.:) (u—_l.)
2 2
-
and

» Q. T =y R (5 (N (66)
(u+ l) (u— ')
2 2
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If

4

- ‘-.v-‘_wmﬂv-‘:w .

Wz =0 and Ql

A ——

= 1, the maximum amplitude of vibration is at

the half-length of the body, and there are nodes at the ends. Using

the notation of Eq. (58) with a, = - a W, /c yields the expressions

for C, and C,

given in Table 1.

For W, =0, 02 =

1, the

maximum amplitude of vibration occurs at the ends of the body,

and there is a node at the half-length, Setting ao = - a W /c, the

expressions for C, and C,

Figures 7 and 8

3 ) verse vibration for spheroid and streamline body families.

show the functions

E' and Ec

corresponding intensities are given in Figs. 9 and 10.

o

(where

are given in the last line of Table 1.

Cs

= E. cos 63 and C. = Ec cos 0; ) for these examples of trans-

The
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As a final remark on the comparison shown in Figs. 3-10, it
should be noted that the streamline body family, as defined by
Eqs. (54) and (55), was selected to give relatively simple expres-
sions for the farfield pressure. All comparisons are for bodies with
the same length ! = 2a and the same radius b at the center. This
is illustrated by Fig. 2. It might be expected that the comparison
should be for the same ratio of maximum diameter to length, or for
the same volume, or some other specification of the spheroid to use
in comparison with a streamline body. However, consider Fig. 3,

which shows Cs and C. for rigid body vibration. The spheroid

provides a good approximation to C. for the steamline bodies,




but no spheroid provides an approximation for C,. Thus, no
significant improvement in the approximation of the farfield of the
streamline bodies would be obtained by selecting a different

spheroid. Similar remarks hold for the other examples,

a8 -
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Navy Underwater Sound Laboratory
Report No. 706
LOW FREQUENCY SOUND RADIATION FROM SLENDER
BODIFS OF REVOLUTION, by Hartley L. Pond.
7 February 1966. i-vi + 32 p., figs. UNCLASSIFIED

The radiated pressure field due to the low frequency
vibration of a slender body of revolution is expressed in
terms of a distribution of sources and doublets along the
body axis. The strength of the singularities is deter-
mined from an analysis of the flow near the slender body.
For axially symmetric flow a longitudinal rigid body
vibration and a simple type of accordion vibration are
considered. For these examples the source distribution
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has the dominant effect on the farfield pressure. For
transverse vibration there is only a doublet distribution.
The strength of the doubler distribution depends on the
! force the body exerts on the fluid. For wavelengths

| much greater than the maximum body diameter, this

| force can be conveniently determined by the extended
! Lagally theorem of incompressible hydrodynamics.

| Formulas for the farfield pressure for each type of vibra-
| tion are given for spheroids and a simple class of

! streamline bodies, Examples illustrating the effect of
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change in body shape and type of vibration are given.
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| has the dominant effect on the farfield pressure. For

" transverse vibration there is only a doublet distribution.
. The strength of the doublet distribution depends on the
_ force the body exerts on the fluid. For wavelengths

_ much greater than the maximum body diameter, this

“ force can be conveniently determined by the extended

' Lagally theorem of incompressible hydrodynamics.

| Formulas for the farfield pressure for each type of vibra-
" tion are given for spheroids and a simple class of

| streamline bodies. Examples illustrating the effect of

i change in body shape and type of vibration are given,
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